
IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 3, MARCH 1982

Hardware Specification with Temporal Logic:
An Example
GREGOR V. BOCHMANN

Abstract-The use of temporal logic for the specification of
hardware modules is explored. Temporal logic is an extension of
conventional logic. While traditional logic is useful for specifying
combinational circuits, it is shown how the extensions of temporal logic
apply to the specification of memory, as well as the safeness and live-
ness properties of active circuits representing processes. These ideas
are demonstrated by the example of a self-timed arbiter. An imple-
mentation of the arbiter is also given, and its formal verification by a

kind of reachability analysis is discussed. This verification approach
is also useful for finding design errors, as demonstrated by an ex-

ample.

Index Terms-Arbiter, design verification, hardware specification,
hardware verification, logic design, modal logic, self-timed systems,
temporal logic, VLSI design.

I. INTRODUCTION

As systems become more and more complex, good methods
A6 for specifying the systems and their submodules become

more and more important. In this paper we explore the possi-

bility of using temporal logic, an extension to traditional logic
and predicate calculus, for the specification of hardware
modules. While traditional logic is useful for specifying system
states that are possible at some given time, temporal logic
provides additional facilities for specifying possible state se-

quences, such that the evolution of the system may be char-
acterized.

Although it seems that considerations of real time may be
added to the temporal logic formalism, we do not deal with
such considerations in this paper. We focus our attention to
systems in which the submodules interact asynchronously
through some appropriate signaling scheme. In such systems
we are not (so much) interested in the question at exactly what
time some thing will happen, but rather that they will even-

tually happen. The formalism of temporal logic contains
constructions for speaking exactly about these considerations
[7].
We note that temporal logic has first been proposed for the

specification of software systems [1]. In fact, the design of most
software modules does not require real-time considerations,
but only considerations for eventual (and not "too slow") re-

sponse. This is also true for asynchronous interaction between
hardware components. Such interaction has been used in many
systems. It has been argued recently [2] that asynchronous

Manuscript received June 30, 1980; revised May 27, 1981. This work was

supported in part by the Computer Systems Laboratory, Stanford University,
Stanford, CA, DARPA Contract MDA903-79-C-0680.
The author is with the Departement d'Informatique et de Recherche Op-

erationnelle, Universite de Montreal, Montreal, P.Q., Canada.

interaction between components within VLSI systems allows
more flexibility in the design by using "self-timed" submo-
dules. The specification method described in this paper is di-
rectly applicable to such systems at the circuit level of detail.
Specification at a somehow more abstract level is discussed in
a companion paper [3].
We give in this paper first an overview of temporal logic, and

introduce the while operator which we found particularly useful
for describing memory aspects of hardware modules. We give
a formal meaning to this operator by defining proof rules in
the context of a transition model of computation. The main
part of the paper then deals with the example of a self-timed
arbiter, as described in [4]. This part describes the properties
of the arbiter, its implementation in terms of more primitive
logical circuits, and an analysis of this implementation covering
up an error and some "difficulties." The last section contains
some remarks on the use of temporal logic and conclusions.

II. TEMPORAL LOGIC
A. Informal Introduction
We give in the following a very informal introduction to

temporal logic. A more precise discussion of this topic may be
found in [1]. We assume that the reader is familiar with tra-
ditional logic, as far as Boolean algebra and simple predicate
calculus is concerned. While the traditional logic uses such
operators as A, V, =, ,, etc., temporal logic introduces ad-
ditional operators for dealing with temporal sequences. While
an expression of the traditional predicate calculus is assumed
to specify properties of the system state at some given time,
which in the following is called the "present" time, an ex-

pression of the temporal logic is assumed to specify properties
of all possible execution sequences that may evolve from the
present system state. We explain in the following- the typical
temporal operators.

The "Henceforth" Operator 0: The expression OA means

that the assertion A is true at the present time and at all future
times. For example, the assertion

B OA

means that whenever B is true at some particular time (which
is said to be the "present" time), then A is true also and will
remain forever. We note that the assertion O3A is equivalent
to A, and means that A is true at each time that may be con-

sidered present, i.e., at all times. This also means that A is an
invariant.

The "Eventually" Operator V: The expression VA means

0018-9340/82/0300-0223$00.75 1982 IEEE

223

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 3, MARCH 1982

that the assertion A will be true at some future time, possibly
the present time, but not necessarily remain true. For example,
the assertion

B =* VA
means that if B is true in the present time, i.e., at some given
time, then A will eventually become true. This operator is
usually used to specify the eventual response of a module to
some given request.
Temporal operators may be combined. For example, the

assertion
B = VOA

means that if B is true at present then there will eventually be
a time from which on A will always remain true. (It may have
been true intermittently before.) The assertion

B => OVA

means that if B is true at present, then at every future instant
of time A will eventually be true after that instant; therefore
A will be true infinitely often, possibly without any change.

The next Operator: The expression B = next A means that
if B is true at present, then A will be true at the "next" instant
of time to be considered. This introduces the concept of discrete
time and the concept of a transition that occurs between sub-
sequent time instants. The same model of transitions and dis-
crete time is often used for the description of parallel processes
[5], [6]. These concepts are also the basis for the definition of
the while operator below.

It is important to note that the use of the next operator
represents an idealization. Using this operator for hardware
specification, we assume that the transition times of the circuits
considered are short compared to the time intervals of the next
operator. This means that the next transition of the input
signals only occurs when the output signals have assumed a
stable value. We note that more than one input may change
between two consecutive time instants considered.

B. The while Operator
We introduce the while operator with the following (infor-

mal) meaning.
A while B

means that ifB is true at present, then A is true at present and
remains true as long as B remains true. However, it implies
nothing for any time after B has been false at some given in-
stant. More formally, we may define the while operator re-
cursively using the next operator as follows. Definition of the
while operator:

(A while B) is equivalent to (B ==> (A A next (A while B))).
In order to be able to analyze a system that is described with

the help of a while operator, we need proof rules that define the
properties of the while operator to be used in the logical rea-
soning about the described system. The following proof rules
relate properties of the present state with properties at the next
time instant. They are related to the transition model intro-
duced by the next operator. More powerful proof rules could
be derived. However, the following ones seem to be sufficient
in many cases.

In order to distinguish between the properties of the present
state and those at the next instant, we use in the following
simple names to refer to variables and logical expressions that
characterize the present system state, and primed names to
refer to expressions that are true in the next state. We have the
following proof rules.

(Proof I
) A while B

B ==*A
A while B

(Proof 2) B AB' A'

(Proof 3) A => A while B
A A B A B'==*4'

These rules are easily derived from the definition of the while
operator given above, noting that B' is equivalent to next B,
and similarly for A. Clearly, (A while B) implies B # A. It also
implies B > next (B ==> A), which is equivalent to (B A B'
A').
Many of the assertions involving the while operator in the

example below are of the particular form A = A while B, for
which the last rule applies. It is interesting to note that this rule
does not imply any property for the present state, as the first
proof rule for the expression A while B does. It only implies a
property that relates the present state to the next one. It is
therefore particularly suitable for describing memory prop-
erties.
C. Comments on the Use of Temporal Logicfor Hardware
Specification
The use of the different operators of temporal logic is

demonstrated by the arbiter example discussed in the Section
III below. In this section we only wish to give the reader a
general feeling for which aspects of a hardware specification
the different operators of temporal logic are most suitable.

Combinational Circuits: Combinational circuits have es-
sentially no time dependence. The output values are a function
of the input values at any given instant, independently of
previous values. Properties of such functions may be specified
by traditional logic using input-output assertions. Temporal
operators are not needed. We note that this description ab-
stracts from such details as signal propagation and switching
delays within the circuit, which may be important when the
real timing of the transitions within a sequential circuit are
considered.
Memory Elements: Memory elements have two aspects,

namely the setting of a new value and the keeping of this value.
These two aspects may naturally be described by a partially
defined input-output function and a while clause, respectively.
For example, a simple memory element that may be reset and
set toan input value, may be defined as follows. The memory
element interacts with its environment through the circuits
RESET, SET, IN, and OUT. The following assertions hold for
th-e values of these circuits:
RESET OUT (output value set to zero)
SET => OUT = IN (the output value is set to the input
value)
OUT =* OUT while IRESET A + SET (keeping the value)
- OUT =- OUT while i RESET A -, SET (keeping the
value).

224

BOCHMANN: HARDWARE SPECIFICATION

The first two formulas specify the input-output function of the
memory element partially (not for the case that i RESET A
-i SET). The last two while clauses may be rewritten in the
abbreviated form

(OUT = X) > (OUT = x) whilem RESET A i SET

where universal quantification- is assumed over the variable
x taking on the Boolean values true or false.

Processes: While combinational circuits and memory ele-
ments may be considered passive components, we consider
processes to be those system components that initiate system
state changes. In many cases state changes are only initiated
by a given process in response to state changes initiated by
some other part of the system at some earlier instant in time
(as, for example, by the arbiter considered below).

Properties of processes are often classified into two kinds,
namely safeness assertions (often called "partial correctness")
and liveness assertions [7]. The safeness assertions specify
properties that hold at any given time (invariant assertions)
and properties that determine in which order different events
of state change may occur. As above, these properties may be
specified by traditional invariant assertions in predicate cal-
culus and while expressions, respectively. Other examples are
-the mutual exclusion property of the arbiter discussed below,
and the safeness property of the four-cycle signaling scheme
used by that arbiter.
The liveness assertions specify properties that imply some

kind of progress and state changes that lead to some desired
behavior or to some termination state. These properties may
be specified using the "eventually" operator V, sometimes in
conjunction with the "henceforth" operator 0.

III. THE EXAMPLE OF AN ARBITER

We consider the example of an arbiter module (adapted
from [4]) which determines the order in which two user
modules obtain access to a shared resource module, as shown
in Fig. 1. The arbiter interacts with the other modules over
circuit pairs that follow the four-cycle (FC) signaling scheme
explained below. The signaling scheme determines in which
form requests and acknowledgments are exchanged between
two interacting modules. As shown in Fig. 1, the arbiter
module interacts through five circuit pairs with the other
modules. Over the pairs (URl, UA1) and (UR2, UA2), the
user modules Ul and U2, respectively, request an access to the
resource. When the arbiter grants access to one of the users,
it requests the transfer of some parameter values from the-
selected user to the resource through the corresponding pair
(TR 1, TA 1) or (TR2, TA 2). When the parameters have been
transferred the arbiter sends a request to the resource through
the pair (SR, SA). After the resource has acknowledged the
request, the cycle may start again, possibly granting access to
the other user.

A. Specification

1) Specification of the Four-Cycle Signaling Scheme:
Before we give a precise specification of the arbiter module,
we define now the properties of the four-cycle signaling scheme
used for the interaction between the modules. The scheme is

module TR2 TA2
U2 ~ .i

transfer _ __
module

T2

Fig. 1. The interactions of the arbiter module with the other modules in
the system.

used over a pair of circuits, which we name R and A in the
following. The R circuit carries the request from one module
(which we call the requesting module) to the other (which we
call the responding module). The A circuit carries the ac-
knowledgment back from the responding module to the re-
questing one. The order in which these circuits may change
their value is governed by the four-cycle scheme, which is in-
formally shown in Fig. 2. Using the notation in Section II, we
may define this signaling scheme as follows:
(FCI) (R=x)= (R=x) while(A x)
(FC2) A= V mR.
These two assertions should be satisfied by the requesting
module. (FCl) states that the request circuit should not change
its value until the acknowledge circuit has as'sumed the same
value. For instance, when a request has been made (R set to
one) the request circuit must stay up until an acknowledgment
has been received (A set to one). And a new request may only
be given after or when the acknowledgment signal is reset.

'Assertion (FC2) states that the requesting module should
eventually terminate the request after the acknowledgment
has been received.
(FC3) (A = x) => (A = x) while (R = x)
(FC4) R=VA
(FC5) R= V-iA.
These assertions should be satisfied by the responding module.
(FC3) corresponds to (FC1) and states that the acknowledge
circuit may only change its value when the request circuit has
the opposite value. (FC4) and (FC5) state that such a change
ofA must eventually occur some time after the request circuit
R has changed.

2) Specification of the Arbiter: We give now a precise
specification of the behavior of the arbiter module, using the
notation explained in Section II. The specification consists of
three parts:

1) an enumeration of the interface circuits used for inter-
action with other modules,

2) assumptions about the behavior of the other modules
with which the arbiter interacts, and

225

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 3, MARCH 1982

R J-\ / V

A

Fig. 2. Time diagram of the four-cycle signaling scheme.

3) assertions that must be satisfied by the arbiter provided
the assumptions are met.

Point 1) is explained above (see Fig. 1); the other points are
giVen below.

Assumptions:
(UiFCI) and (UiFC2) for i = 1, 2.

These assumptions are obtained from (FCl) and (FC2), re-
spectively, by replacing R by URi and A by UAi. For example,
(U2FC2) reads "UA2 V - UR2."

(TiFC3), (TiFC4), and (TiFC5) for i = 1, 2.

They are obtained from (FC3), (FC4), and (FC5) by re-
placing R by TRi and A by TAi.

(SFC3), (SFC4), and (SFC5).

They are obtained from (FC3), (FC4), and (FC5) by re-
placing R by SR and A by SA.

For example, the assumptions (UiFC1) and (UiFC2) mean
that the user modules Ui [which are requesting modules for
the circuit pairs (URi, UAi), (i = 1, 2)] satisfy the four-cycle
signaling conventions. (We note that somehow stronger as-
sumptions are actually needed, as discussed in Section III-D3.)
The other assumptions, similarly, apply to the parameter
transfer and resource modules (which are responding).

Assertions.
(UiFC3), (UiFC4), (UiFC5), (TiFCI), (TiFC2), (SFCJ),
(SFC2).
These assertions are derived from the four-cycle assertions
(FCk), k = 1,.*. ,5 similarly as the assumptions above. They
state that the requirements of the four-cycle signaling scheme
must be satisfied by the arbiter, as a responding and a re-
questing module, respectively.
(A1) -,(TRl A TR2).
This assertion states the mutual exclusion property that only
one parameter transfer may be requested at-any given time.

(A2) SR A -SA=> (TR1 A TA1) v (TR2 A TA2).

(A3) TRi > TRi while -iSA (i = 1, 2).

These additional safeness assertions may be required de-
pending on the interaction between the parameter transfer and
the resource modules. It may be necessary that the parameter
transfer request is acknowledged and still active when the re-

source receives the request (A2), and remain active until the
resource gives its acknowledgment (A 3).
(A4) URi= V (TRi A SR) for i = 1,2.

This assertion states the liveness property of the arbiter,
namely that after a request is given by the user module Ui,
eventually this request will be served by transferring the user's
parameters and making a request to the shared resource. We

note that the arbiter implementation satisfies even the stronger
assertion
(A5) URi=>V(URiATRiASR) fori=1,2
which implies, together with the other assertions, that the user
request will be acknowledged only after it has been passed to
the resource.

B. Implementation of the Arbiter

Fig. 3 (adapted from [4]) shows a possible implementation
of an arbiter in terms of more primitive submodules. The
submodules used here are elementary combinational AND and
OR circuits, as well as more complex Muller rendezvous(C)
and mutual exclusion (ME) circuits, which are discussed in
more detail in [2] and [4], respectively.
The rendezvous circuit is defined as follows. When both

inputs of a C-element assume the same value, then its output
will be the same value. This is the only occasion when the
output may change. This property may be defined by the fol-
lowing assertion:

(C) (INI = IN2 = x) > (OUT = X)
while ((IN1 = x) V (IN2 = x))

An equivalent pair of assertions is-
(Cl) (INi = IN2 = x) > (OUT = X)
(C2) (OUT = X)-(OUT = X)

while ((INI = x) V (IN2 = x)).
The properties of a ME-element may be defined as follows (for
a possible implementation of such a ME-element, see, for
example, [4]):

(MEl) MEOi == MEOi while MEIi.

This means that when an output is up it remains up as long as
the corresponding input is up.

(ME 2) -i (MEOi A -i MEIi).

This means that an output is only up while the corresponding
input is also up.

(ME3) ----I (MEOI A ME02).

This states the mutual exclusion between the two outputs.

(ME4) OMMEIi A O V - iMEOj=
V MEOi (ij = 1, 2; i # j).

This assertion states that if a given input MEIi remains up
forever and the opposite output is down forever, or an unlimited
number of times, then the output corresponding to the given
input will eventually come up. This is a relatively weak fairness
assumption. A stronger assumption is

(ME4*) -1 (MEIi A -i MEIj A -i MEOi)(ij = 1, 2; i # j)
which states that whenever there is a request on input MEIi
and no request on the other input then the corresponding
output MEOi must be up. The weaker assumption will be used
in the proof of the arbiter liveness in Section III-D4.

C. Verification of the Arbiter Implementation
A verification of the implementation consists of showing that

the assertions of the arbiter specification given in Section
I11-A2 can be derived from the assertions for the submodules

226

BOCHMANN: HARDWARE SPECIFICATION

out of which the arbiter is built (see above), taking into account
the way these submodules are connected with one another and
to the interface circuits of the arbiter.
We give in this section some informal arguments that the

arbiter implementation is correct by considering all possible
states into which the operation of the implementation may lead
(from some assumed initial state), showing that all states and
transitions satisfy the arbiter assertions. This is an informal
reachability analysis. Starting in the initial state of the im-
plementation, this analysis considers, from each intermediate
reachable state, all possible transitions that may lead to other
states. The possible transitions are induced by value changes
of input circuits to the arbiter, as well as by value changes
generated within the arbiter by some of its submodules. (In the
case of this arbiter implementation, the only internally gen-
erated change may come from the ME-element for which an
output may go up some undetermined time after the corre-
sponding input went up [4]; this is expressed by the eventually
operator V in assertion (ME4). The output of the combina-
torial circuits and the C-elements only change when their input
change.)
As initial state we assume the value zero for all circuits. The

only possible transitions from this state are due to requests
from the users Ul and/or U2. These requests will set the cor-
responding input to the ME-element to one, but only one
output of the ME-element will go up because of its mutual
exclusion property. Assuming that the output ME01 goes up,
the table below shows the subsequent state changes. We note
that the first line of the table (called "state" 1) represents
actually four different states, depending whether the request
circuits UR1 and UR2 are up, or not. Each of the following
lines represents two individual states, depending whether the
circuit UR2 is up, or not. The possible transitions are shown
in Fig. 4 (solid arrows), where the states s'(s = 2,- 6) are
similar to the states s, corresponding to the case that the
ME-element chooses to set the other output ME02 to one.

TRI TAI

SR

TR2 TA2

Fig. 3. An implementation of the arbiter module.

Fig. 4. Some possible transitions for the arbiter implementation.

simple sequence of transitions that may occur, which are ini-
tiated by the following events:

* TA 1 goes up in response to the transfer request,
* SA goes up in response to the service request,
* the user request goes down,
* TA 1 goes down after TR 1 went down,
* SA goes down after SR went down.

State UR1 MEI MEOi TR1 TAl SRI SR SA UAl

1 ? 0 0 0 0 0 0 0 Initialstate
2 1 1 1 1 0 0 0 0 0 ME outputhasgoneup
3 1 1 1 1 1 1 1 0 0 Transfer modulehas given

acknowledgment
4 1 1 1 1 1 1 1 1 I Resource module has given

acknowledgment
5 0 1 1 0 1 1 1 1 1 User has reset the request circuit
6 0 1 1 0 0 0 0 1 1 Transfer module has reset its

acknowledge circuit; transition to
state 1 when the resource module
resets its acknowledge circuit

5* 0 1 1 0 1 0 0 1 1 Resource module has reset its
acknowledge circuit

1 * ?0 0 1 0 0 0 0 Transfer module still has not reset
its acknowledge circuit

2* 1 1 1 1 1 0 0 0 0 ME output has gone up

6* 0 1 1 0 0 0 0 1 1 Transfer module has reset its
acknowledge circuit

6** 0 1 1 0 1 0 0 0 1 Resource module has reset its
acknowledge circuit

After the ME output MEOI has gone up, there is only a

Comments

227

This last transition leads back to the state I, with another

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 3, MARCH 1982

request possibly pending from user U2. Since this is the only
possible sequence of transitions, it is easy to check that the
safeness properties of the arbiter are satisfied. For the liveness
properties of the arbiter, we refer the reader to the discussion
in Section III-D4.
The same kind of analysis is also useful for finding design

errors in implementations. As an example we consider again
the arbiter specification in Section III-A2, but a different
implementation, the one given by [4, Fig. 9]. This figure differs
from Fig. 3 (except for notation) only by the fact that the Ck
(k = 3, 4) circuits are replaced by AND gates. Making the
same kind of analysis as above, we find that up to state 4, there
is no.change in the behavior of the system. However, from state
4, two transitions are possible. First the transition to state 5
as before, and second the transition to state 5* (see table),
which occurs when the resource resets its acknowledge circuit
before this is done by the transfer module. (In the implemen-
tation of Fig. 3, the former has to wait for the latter.) Assuming
the transfer module is "slow," transitions to states 1 * and 2*
may occur before the transfer module resets its acknowledge
circuit (as shown in Fig. 4, dashed arrows). But the transition
to state 2* is in conflict with the four-cycle signaling scheme
for the transfer circuits TR 1 and TA 1, since a new request is
given before the acknowledge circuit is reset. We conclude that
the implementation does not satisfy the signaling scheme for
the interaction with the transfer module (i.e., assertion
(TIFCl), and is therefore incorrect.

C. L. Seitz pointed out to me that this error is due to a
misprint, and that the correct Fig. 9 of [4] should show the
horizontal wires from Cl and C2 (using our labeling) going
to TA 1 and TA2, not to TR 1 and TR2. Making the same kind
of analysis as above, we find the same behavior as the faulty
implementation up to state 5*. However, the following state
is either 6* or 6**, depending on the relative speed of the
transfer and resource modules. One may say that the ac-
knowledgment circuits of these two modules are reset "si-
multaneously." The initial state 1 is reached as soon as both
circuit have been reset.

D. Formal Verification
We now outline a formal proof that the arbiter implemen-

tation as given in Section Ill-B satisfies the arbiter specifica-
tion given in Section III-A2. This proof is structured into the
following sections:

1) rewriting the properties of the submodules of the im-
plementation, taking into account their interconnection,

2) writing down invariant assertions that hold for all
reachable system states,

3) proving these assertions,
4) deriving the safeness properties of the arbiter, and fi-

nally,
5) deriving the liveness properties of the arbiter.
1) Properties ofthe Submodules and their Interconnection:

The following assertions are directly implied by the properties
of the submodules of the implementation, as defined in section
III-B, taking into account their interconnection as defined in
Fig. 3.
The C-elements (for i = 1, 2 and k = 3, 4, respectively):

(Cil) (TRi=SA =x)=(UAi=x)
(Ci2) (UAi = x) > (UAi = x) while

((TRI = x)
(Ckl) (TAi = URi = x)= (SRi = x)
(Ck2) (SRi = x) .: (SRi = x) while

V (SA = x))

((TAi = x) V (URi = x))
The OR-gates (for i = 1, 2):
(oRi) MEIi = URi V UAi
(oR3) SR = SRI v SR2
The AND-gates (i = 1, 2):
(ANDi) TRi = MEOi A URi
The ME-element:
The assertions (ME 1) through (ME4) given in Section
III-B.

2) Invariant Assertions: As shown in the next section, the
following assertions (for i = 1 and 2) hold for all reachable
states of the arbiter implementation.

(II) SRi = TAi
(I2) SR = SRI V SR2
(I3) SA = UAl v UA2
(I4) -MEOi=--UTRi A mSRi A mUAi
(I5) MEOi = TRi = URi
(I6) MEOi

(TRi A TAi A UAi)
V (TRi A TAi A mUAi)
V (TRi A TAi A UAi)
V (TRi A TAi A UAi)
V (-lnTRi A m TAi A UAi)

(I7) - (MEO1 A ME02).

We define classes of system states
III-C) by the following assertions:

(similarly, as in Section

(State 1):,MEO I A - ME02
(State k) (k = 2, 3, 4, 5, 6): MEO1 A - ME02 A the (k-1)th
subclause of (16) with i = 1
(States k') (k = 2, 3, 4, 5, 6): MEO1 A ME02 A the (k-
I)th subclause of (I6) with i = 2.

3) ProofofInvariants: The invariants (I2) and (I7) are the
same as the assertions (oR3) and (ME3). The other invariants
follow from the following analysis, which is based on case
analysis. For each of the above classes of system states, we
consider different values for the circuits of the arbiter imple-
mentation for the next system state. The proof rule (Proof 3)
for the while operator and the assumptions of the arbiter
specification of Section III-A2 are used to limit the number
of possible cases. This leads to an exploration of all system
states that are reachable from an initial state. The approach
is a kind of "reachability analysis," and is related to symbolic
execution.

Clearly, the invariants hold in the initial state (all circuits
have the value zero). We note that the initial state satisfies the
assertion (State 1). As long as the system is in "state" 1, as-
sertions (oRi) imply that MEIi = URi. [Here and in the fol-
lowing, we write casually "state" x to indicate a state that
satisfies (State x)]. We now consider an arbitrary transition
to a next state s' from a present state satisfying (State 1). The
following cases are possible for the next state s' (i = 1, 2).

228

BOCHMANN: HARDWARE SPECIFICATION

Case 1: Assume m MEOi' im1- TRi' =* 2- TAi' A
UAi' ' 3 -SRi'.

Case 2: Assume MEOi'.
Case 2.1: Assume m URi' = 4UAi' A ,SRi'

5 m SR' => 6-1SA' ==> 71 UAi' (contradiction).
Case 2.2: Assume URi' TRi'.

Case 2.2.1: Assume TAi' 'SRi' SR'.
Case 2.2.1.1: Assume SA' > UAi'.
Case 2.2.1.2: Assume - SA' - UAi'.

Case 2.2.2: Assume m TAi'V ,mSRi' > m SR'
> SA' => --iUA'.

In order to make the reasoning behind the above cases more
clear, we have indicated for the first of the above implications
an index that refers to the following explanations.

1) This follows from (ANDi).
2) Using the proof rule (Proof 3) explained in Section Il-B

for (TiFC3) yields

-, TAi A 1TRi A 1TRi' ' TAi'

which implies -i TAi' since m TAi A TRi. Similarly, the
rule applied to (Ci2) yields

,UAi A (- TRi v -SA) A
(-,TRi' v -SA') => -UAi'

which implies m UAi'.
3) This follows from (Ck2) and the fact that TAi holds.

The proof is similar as for 2).
4) (MEl) implies that MEIi' is true; therefore (oRi)

implies UAi'. The second part follows from (ANDi).
5) This follows from (Ck2) similarly as in 2).
6) This follows from (SFC3) similarly as the first part of

2).
7) This follows from (Ci2).
It is easy to check that all cases (except Case 2.2 which

cannot occur) satisfy the invariants. We note that the Case 1
(for i = l and 2), 2.2.1.1, 2.2.1.2, and 2.2.2 (for i = 1) satisfy
the assertions (State 1), (State 2), (State 3), and (State 4),
respectively. This means that the next state may still satisfy
(State 1), or transitions may occur to the "states" 2, 3, and 4.
Similarly, transitions may occur to "states" 2', 3', and 4'.

In a similar manner one can determine the possible transi-
tions from other "states." The result is shown in Fig. 5, where
an arrow from "state" x to "state" y indicates that for a present
state satisfying (State x), there is a possible next state satis-
fying (State y), and all such possibilities are indicated. We do
not give the details for deriving Fig. 5, but consider in the fol-
lowing only some cases that are of particular interest. Starting
in a state satisfying (State 2), and assuming the case that
MEOI' A TAi' is true, we have the following subcases.

Case 1: Assume URi' > SRi' A TRi' ==>SR'.
Case 1.1: Assume SA' => UAi'.
Case 1.2: Assume SA' = mUAi'.

Case 2: Assume mURi' > TRi' A mSRI' 'mSR'
= SA' =>-i UAi' = MEIi' = mMEOi'

(contradiction).
We note that the four-cycle signaling scheme, as defined in

Section Ill-Al, allows that the response of the acknowledge
circuit is given simultaneously with the setting or resetting of

Fig. 5. Complete transition diagram for the arbiter implementation of
Fig. 3.

the request circuit. This is realized in Case 1.1 above. It also
allows that the resetting of the request circuit or the next re-
quest is given simultaneously with the response of the ac-
knowledge circuit to the last value change of the request circuit.
We see from the above consideration of cases that starting in
4"state" 2, the next "state" may set the user acknowledge circuit
(Case 1. 1), but it is not possible that the user simultaneously
resets its request (Case 2). This is a restriction on the behavior
of the user module that is not implied by the four-cycle sig-
naling convention specified in Section Ill-Al.

Another interesting example are the transitions from "state"
6. Starting in a state satisfying (State 6), we have the following
possibilities.

Case 1: Assume SA' UAi' -,URi' A MEOi'
,TRi' TAi' SRi' SR'.

Case 2: Assume i SA' n UAi'.
Case 2.1: Assume URi' 2 mMEIi' MEOi'

= TRi'= ,TAi' ,SRi' , SR'.
Case 2.2: Assume URi' MEIi' > MEOi' TRi'

UAi' (contradiction).
This shows that the next state either satisfies (State 6) (Case

1, there is no progress) or (State 1) (Case 2. 1). Therefore, the
system will always come back to "state" 1, i.e., this state cannot
be skipped, as "states" 2 and 3 may be, for example. This ob-
servation is important for the consideration of liveness
below.
The contradiction in Case 2.2 shows that a user module may

not make a new request at the same time as the acknowledge
circuit is reset. This is another restriction on the behavior of
the user module that is not implied by the four-cycle specifi-
cation of Section Ill-Al. This stronger assumption on the user
modules may be expressed by adding to the assumptions of the
arbiter specification in Section III-A2 the assertion
(UiCF6) (UAi # x) A (next UAi = x) (next URi = x).
4) Proof of the Arbiter Assertions: We can now use the

invariants to derive the safeness assertions of the arbiter. The
assertions (UiFC3), (TiFC1 }, and (SFC1) can be verified by
observing that the proof rule for the while operator is satisfied
for all possible transitions. As shown above, however, it is
necessary to make the stronger assumption (UiCF6) about the
behavior of the user modules.
The mutual exclusion property (A 1) follows easily from (I7)

and (14). Also, the assertions (A2) and (A3) can be easily
derived from the invariants.
The arbiter liveness assertions (UiFC4), (UiFC5), (TiFC2),

(SFC2), and (A4) are verified by showing that as long as user

229

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 3, MARCH 1982

requests are present, certain transitions must occur that
eventually lead back to the initial state. This approach is
similar to the one described in [7]. Assume, for example, that
the present state satisfies (State 1). If we use the following
assertion which is proven below

(ME fairness) State I A URi V MEOi (i = 1, 2)

then the consideration of possible cases in Section III-D3
implies the assertion

State 1 A URl > V State 2 V State 3 V State 4).

Similarly, if the system state satisfies (State 2), assumption
(TIFC4) proves that

State 2=V TA I

which implies by consideration of the different cases that

State 2 > v (State 3 v State 4).

We conclude that the liveness assumptions of the sur-

rounding modules, the (ME fairness) assertion above, and the
considerations of possible transitions of the arbiter imple-
mentation prove that when a user request is active, the system
will perform eventually a certain number of transitions that
lead through different states and back to "state" 1, as shown
in Fig. 5. This implies the liveness assertions of the arbiter.
Assertions (A4) and (A 5), in particular, follow from the ob-
servation that the transition sequence leads through "state"
3 and/or 4, for which URi A TRi A SR is true.
The (ME fairness) assertion can be proven as follows. Let

us do the considerations for i = 1. First, we show that V a
ME02 holds. This is true since whenever ME02 holds a se-

quence of transitions will lead back to a state satisfying (State
1), for which -- ME02 holds. Now we assume that (State 1

A UR1) holds in the present state, and -I V MEO 1, which
implies o MEOI. (The temporal logic axioms used are

explained in [].) This further implies a, TR X O
UA 1 O UR1 MEI I. Then we can use the property
(ME4) to show that V MEO1 holds, which is a contradiction
to the assumption. Therefore, V MEO1 must hold. We note
that it is essential for this proof that the system goes back to
"state" I before servicing another request. This is related to
the fact that a user module must wait at least to the next instant
after the acknowledge circuit is reset before it may make the
next request (see above).

IV. COMMENTS AND CONCLUSIONS

We conclude this paper by discussing some particular points
and giving some concluding remarks. As may be expected, we
found that temporal logic was a versatile tool for specifying
various properties of hardware modules. We hope that the
example of this paper has also convinced the reader of the
suitability of temporal logic for the specification of asyn-

chronous systems. As discussed in Section 1I-C, traditional
logic is useful for specifying combinational circuits and certain
safeness properties of processes, the temporal while operator
allows the specification of memory properties and other safe-
ness properties of processes, while the "eventually" and
"henceforth" operators are useful for the specification of the
liveness properties of processes.

Section III gives the example of a verification of an arbiter

implementation. We note that this verification is basically a
"reachability analysis" where assertions are used to charac-
terize sets of possible system states. Using the proof rules for
the while operator given in Section II-B, the verification of
safeness is relatively straightforward. It involves mainly the
consideration of a large number of different cases. An auto-
mated proof system can be useful here.
The proof of liveness and fair scheduling between the two

users involves fewer cases, but is logically more complex than
the safeness proof. Here the power of the temporal operators
o and v are particularly useful.

It is interesting to note that the specification method used
in this paper does not make any distinction between input and
output. For the specification of a given module in a system, the
possible values for input and output circuits are mentioned,
but nothing is said about whether a given value is determined
by the module in question (output), or received from another
connected module (input). This does not mean that the dis-
tinction between input and output is not an important one. For
instance, the verification proofs considering the different cases
in the Sections 111-C and III-D3 are guided by the flow of in-
formation from outputs to inputs of submodules, corresponding
to the intuition of the author. Clearly, the distinction is also
crucial for the hardware realization of the submodules.

While the design error in an arbiter implementation men-
tioned in Section 111-C was found during the informal rea-
chability analysis described in that section, the more-formal
proof described in Section III-D uncovers the following more
subtle possible timing problem. It was shown in Section III-D3
that a user submodule Ui must have observed the acknowledge
circuit down at least one instant in time before it makes the
next request. In our computational model of discrete time,
what does this requirement really mean? We assume that all
value changes of one transition have effectively been propa-
gated by the hardware realization before the next transition
may occur. In the case of the user interaction considered here,
it means that the change of the acknowledge circuit to the value
zero must have been propagated from the input SA through
the C-element Ci, the OR-gate ORi, and through the output
circuit UAi to the user module before the latter sets the input
circuit URi to one. If this assumption is not satisfied, a "timing
problem" may occur. For example, in the case that the user
module is fast (responds with the next request with a short
delay) compared to the speed with which the value change of
the acknowledge propagates through the OR-gate ORi, the ORi
output MEIi may stay up. This implies that the corresponding
output of the ME-element remains up, and fair scheduling is
precluded. We note that this difficulty is not present in Seitz'
arbiter implementation (see [4] and Section Ill-C).

ACKNOWLEDGMENT

The author would like to thank J. Clark for suggesting the
example of the arbiter, and S. Owicki for many useful com-
ments and suggestions on earlier versions of this paper.

REFERENCES

[1] Z. Manna and A. Pnueli, "The modal logic of programs," Dep. Comput.
Sci., Stanford Univ., Stanford, CA, Rep. STAN CS 79751, 1979.

[2] C. A. Mead and L. A. Conway, Introduction to VLS Systems. Reading,
MA: Addison-Wesley, 1980, ch. 7.

230

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 3, MARCH 1982

[31 G. V. Bochmann, "High-level modular hardware design and interfaces,"
Dep. Inform. Recherche Oper., Univ. of Montreal, Montreal, P.Q.,
Canada, Pub. 393.

[4] C. L. Seitz, "Ideas about arbiters," LAMBDA, pp. 10-14, First Quarter
1980.

[5] R. M. Keller, "Formal verification of parallel programs," Commun. Ass.
Comput. Mach., vol. 19, pp. 371-384, July 1976.

[61 G. V. Bochmann, "Architecture of distributed computer systems," Lecture
Notes in Computer Science No. 77. Heidelberg: Springer, 1979, ch.
4.

[7] S. Owicki and L. Lamport, "Proving liveness properties of concurrent
programs," Tech. Rep., Oct. 1980.

Gregor V. Bochmann received the Diploma in
physics from the University of Munich, Munich,
Germany, in 1968, and the Ph.D. degree from
McGill University, Montreal, P.Q., Canada, in
1971.
He has worked in the areas of programming

languages and compiler design, communication
protocols, and software engineering. He is cur-
rently Associate Professor in the Departement
d'lnformatique et de Recherche Operationnelle,
Universit6 de Montreal. His present work is aimed

at design methods for communication protocols and distributed systems. From
1977 to 1978 he was a Visiting Professor at the Ecole Polytechnique Federale,
Lausanne, Switzerland. From 1979 to 1980 he was a Visiting Professor in the
Computer Systems Laboratory, Stanford University, Stanford, CA.

A Data Structure for Parallel L/U Decomposition
JOCHEN A. G. JESS AND H. G. M. KEES

Abstract-Some new results are presented concerning the pivoting
of large systems of linear equations with respect to parallel processing
techniques. It will be assumed that the processing of a pivot takes one
time slot. The pivoting problem is studied by means of an associated
graph model. Given a triangulated graph a set of label classes is es-
tablished. Class k contains aD pivots which may be processed in parallel
during the k th time slot. The label classes are used to establish the
elimination-tree (e-tree). The e-tree is a spanning tree for the given
graph. The critical path in the e-tree indicates the minimum number
of time slots necessary to complete the L/U-decomposition. Fur-
thermore, the earliest and latest admissible time slot for the processing
of every pivot may be derived, such that the critical path is not affected.
The e-tree can be seen as a data structure to guide parallel processing
based on sparsity.

Index Terms-Elimination-tree, L/U decomposition, parallel
processing, schedule, sparse matrix pivoting, task graph, tearing,
triangulated graph.

I. INTRODUCTION

THE parallel solution of the linear equation system Ax =
Tb by L/U decomposition is investigated. The L/U de-

composition offers basically two different sources of paral-
lelism.

. Given some pivot, the products involving coefficients from
the pivot-row and pivot-column can all be computed in parallel
in all L/U decomposition schemes. Among others, Pottle and
Wong [1] have proposed a computing unit, which exploits this
parallelism partially.

* Sparsity of A implies that the computations associated
with certain pivots can be executed simultaneously. This aspect
has been studied by various authors [2], [3]. In fact, methods
[4]-[8] known as "tearing" and the decomposition into
"bordered block diagonal form" or "bordered block triangular
form" are in close relation to this issue.

Manuscript received February 16, 1981; revised October 1981.
The authors are with the Department of Electrical Engineering, Eindhoven

University of Technology, Eindhoven, The Netherlands.

At this point Wing and Huang's [9] approach is mentioned
which attempts to consider both sources in one theoretical
model.
A new model will be offered here. Central to the model is

the "elimination-tree" ("e-tree"). The elimination-tree is
derived from a graph model of a structurally symmetric matrix
[10]. The algorithm generating the e-tree is simple. Further-
more, the e-tree provides a simple and rigorous guide for the
organization of store and programflow for the L/U decom-
position. The e-tree is mainly used to account for parallelism
due to sparsity. The inherent parallelism ofL/Udecomposition
is accounted for by assuming that whatever work is involved
by processing one pivot can be done in a fixed "time-slot."

Section II starts with some necessary graph notations.
Section III constitutes a somewhat elaborate introduction into
the background of the theory. Generation and theory of the
e-tree are presented in Section IV. Section V illustrates the
application of the concept.

II. GRAPH NOTATIONS

A "graph" G = (V, E) is defined by a set V of elements
called "vertices" and a set E of unordered distinct vertex pairs
called "edges"; thus

E ' {(u,v) I u,v E V;u # v}.

If (u, v) E E, u and v are "adjacent" vertices and the edge (u,
v) is "incident" to u and v.
The set "inc(v, E)" denotes the set of edges incident to

vertex v. Thus,

inc(v, E) :(u, v) e E I u e V).
The set "adj(v, E)" denotes the set of vertices adjacent to

vertex v. Thus,

adj(v, E) := {u e V (u, v) e El.
A set W c V identifies a "subgraph" G(W) = (W, E(W))

0018-9340/82/0300-0231$00.75 © 1982 IEEE

231

